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1. Bone-Metastatic Malignancies and The Vicious Cycle 5. Monocyte Macrophage Polarization Controls Osteoclast and

* Various metastatic malignancies are osteophilic, including prostate cancer and breast cancer Osteoblast Activity during Bone Injury Repair
* Most cancers are incurable at bone-metastatic stages and cause vicious cycle by disrupting osteolysis and
osteogenesis, resulting in poorly-vascularized brittle bone with painful lesions susceptible to fractures A B Pro-Inflammatory
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 Macrophage-targeted therapies have enjoyed success in some primary solid malignancies but their
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application in bone metastatic diseases are unknown 32X 5 X10
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Math modeling facilitates the simultaneous observation of multiple
cell populations and their interactions over time within a complex
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and published parameters allow researchers to identify key .

components within networks of interactions, and make in silico TlmeS
predictions that can be validated biologically. A. The math model
was initially parameterized to reflect cellular interactions underlying A
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: A. The introduction of bone injury after 10 days of homeostasis
Anti-Inflammatory Jury Y

Marker | Fluorophore Bone injury was induced by performing mock intratibial injections on C57BL/6 mice ~ Total Macrophage resulted in expansion of monocytes and shifts in polarized
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% 32 4 & 3 10 12 14 * Macrophages are key players in the osteolytic and osteogenic response to bone injury
O Days  The mathematical model, powered by empirical parameters, recapitulate the cellular dynamics of bone injury response
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g § 81 0x10°.  Mathematical simulation of bone cell dynamics accurately reflected biological dynamics
e = mgso)‘m_?_  Math model can be manipulated to simulate existing therapeutics and offer insight into bone repair progression
-% o 00 ) * Bone-metastatic multiple myeloma generates pro- and anti-inflammatory macrophages over time in vivo
®) T 0 2 4 6 8 10 12 14 « ODE will be expanded into the cancer context for interrogating strategies to reduce cancer progression and bone pathology
* Rapid model predictions will assist in understanding tumor-bone biology and guide bench-top therapy design and testing
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